
About My Coworkers
When AI Joined My Personal Development Team

A candid look at how artificial intelligence is
transforming the developer experience.
And why you might be missing out.

About My Coworkers
When AI Joined My Personal Development Team

A candid look at how artificial intelligence is transforming the developer
experience and why you might be missing out.

Thank You Sponsors!

Nick Nisi
Developer Experience at WorkOS
Organizer at NebraskaJS
Podcaster

formerly of JS Party, now Dysfunctional
Software Engineering Daily

Emcee at SquiggleConf next month
AI Engineer?

Find me at vim.dad

nicknisi.com

https://workos.com/
https://nebraskajs.com/
https://jsparty.fm/
https://dysfunctional.fm/
https://softwareengineeringdaily.com/
https://squiggleconf.com/
https://vim.dad/

If you're not experimenting
with AI

TODAY
You're

ALREADY BEHIND.

nicknisi.com

(That was meant to be provocative)

nicknisi.com

I also used to be skeptical
It just wasn't very good.

Experimenting with Copilot
Occasionally asking ChatGPT a question
Whatever Meta had
Felt like using it was "cheating"

nicknisi.com

JS Nation / React Summit
These amazing developers weren't hiding anything
They were collaborating with AI
While I was hiding, they were innovating

nicknisi.com

That was my wakeup call.

nicknisi.com

I'm not the only one&
AI mandate at Shopify
Other companies too

The writing is on the wall 2 AI adoption isn't optional anymore.

nicknisi.com

Are we overreacting?
Maybe.

nicknisi.com

"If AI can solve your
problems, you don't have
hard problems."

nicknisi.com

What they're really saying is

"AI didn't work for me"
Was their problem really that hard? Maybe.
Were they just not good at structuring the problem for AI? Probably.
Does this mean AI is bad and will never be good? NOPE.

nicknisi.com

This is the worst it'll ever be
We still need to learn how to engage it and when not to use

it.

nicknisi.com

The AI Engineer Mindset
The tools come and go, but the concepts remain
AI isn't ment to replace you, it's meant to augment you.
Your responsibility definitely hasn't increased. But it has evolved.

nicknisi.com

AI Likely won't take your job

Someone using AI might
though
The real competition isn't AI, it's those
who embrace and leverage it effectively.

Ready or not, everything's
about to change
Your daily workflow is about to look
completely different. Are you prepared
to adapt?

That spark you felt when you
first coded? Will it survive?
Prepare to rethink what your ideal job
entails as AI reshapes daily tasks and
responsibilities.

nicknisi.com

The dimensions of AI Adoption

nicknisi.com

1st Dimension: Smarter
Autocomplete

GitHub Copilot suggests the next line
You hit tab to accept
Still basically autocomplete, just smarter

nicknisi.com

This autocomplete is smart - I can kind of chat with
it via comments.

2nd Dimension: Having
Conversations

Copy code into ChatGPT
Ask contextual questions about the code

nicknisi.com

I can chat with this - Maybe I can paste in my file

It's manual.
It's tedious.
But it works.

The "copy-paste-chat" method, while effective, still requires significant human effort and can be repetitive. It's a stepping stone
to more integrated AI workflows.

nicknisi.com

3rd Dimension: Contextual
Understanding

Moving beyond just function or single-file context
AI understands your codebase
Still lots of copy/paste
gitingest.com - Contextualize and paste an entire codebase

nicknisi.com

You're the messenger, copying and pasting, back
and forth, to manage the conversation.

https://gitinjest.com/

This is where a lot of people stop.

The real power: Dimensions 4-7

4th Dimension: Pairing with
an Agent
AI moves beyond reactive responses,
anticipating needs, suggesting
architectural improvements, and actively
debugging your code before you even
ask. It's like having a hyper-intelligent
pair programmer.

5th Dimension: Agents with
Tools
AI takes on larger, end-to-end tasks with
minimal human oversight. Think
generating entire modules, writing
comprehensive test suites for new
features, or refactoring vast sections of
code on its own.

6th Dimension: Agents and
other Agents
Specialized AI agents work in concert,
communicating and coordinating efforts
across different aspects of a project. A
dedicated AI for UI, another for backend
logic, and one for rigorous testing, all
orchestrated seamlessly.

7th Dimension: Agent
Orchestration
AI becomes a true creative partner, not
just automating but generating novel
solutions, optimizing algorithms beyond
human capacity, and even proposing
new product features based on complex
data analysis.

nicknisi.com

Dimensions 4-7
Your True Collaborator

Beyond simple assistance, the higher dimensions of AI adoption unlock a powerful partnership where AI actively contributes to
problem-solving and innovation.

nicknisi.com

4th Dimension: Pairing
with an Agent
Claude Code, Cursor, Amp, etc.

No more copy/paste
AI can see your files directly
AI can edit your files directly

nicknisi.com

Passive assistance becomes active participation

nicknisi.com

5th Dimension: Agents
with Tools

Agents run tests
Execute commands
See the results
MCP

nicknisi.com

The AI doesn't tell you what to do - it can run the
tools and react to the results.

Model Context Protocol (MCP)
An open standard for seamlessly connecting Large Language Models (LLMs) to various external data sources and tools.

Why MCP?

Eliminates the "N×M problem" of
redundant integrations by
standardizing how AI applications
connect to data and tools.

How it Works

Functions as a client-server
architecture, where LLM apps (clients)
connect to MCP servers (data/tools),
much like a USB-C for AI applications.

Key Benefits

Offers real-time data access, multi-
source connectivity, and significantly
simplified integration for AI
applications.

nicknisi.com

The Architecture of MCP: Bridging AI and the
World
The Model Context Protocol (MCP) operates as a universal translator, enabling Large Language Models (LLMs) to interact
dynamically with the vast ecosystem of existing software tools and data, breaking down traditional barriers and expanding AI
capabilities.

1

LLM Application (Client)
The Large Language Model, often
integrated into a user-facing
application, acts as the client. It
sends requests and receives
processed information from the
MCP server.

2

MCP Server (The Universal
Adapter)
This central component acts as a
standardized interface. It interprets
LLM requests, routes them to
appropriate tools/data sources,
executes commands, and formats
responses for the LLM.

3

External Data Sources &
Tools
A diverse array of external systems,
including databases, APIs, web
services, code interpreters, and
specialized software, are connected
to the MCP server, providing real-
world capabilities.

nicknisi.com

From Passive to Active
Large Language Models (LLMs) are evolving beyond mere information providers, now capable of executing actions and directly

interacting with systems on your behalf.

Direct Interaction & Automation
Execute actions, not just provide information
Direct interaction with systems

LLMs can read/write files and databases, send
emails/messages, execute code and scripts, update
calendars and tasks, and make API calls to any service.

Real-World Impact
"Book that meeting" ³ Actually schedules it.
"Create a pull request" ³ Actually creates it.
"Analyze this runtime issue" ³ Spins up a browser
and debugs.

nicknisi.com

AI becomes your digital executor
One conversation replaces mutliple manual steps across different apps/contexts.

Convo

Context
Preservation

Retains info across tasks

Real-time
Actions

Immediate execution of tasks

Cross-app
Integration

Connects multiple systems

Automated
Workflows

Eliminates manual steps

Unified
Interface

Single chat replacing apps

nicknisi.com

6th Dimension: Agents
Learn to Chat Too
Just like you learned to chat with AI agents, now AI agents are learning to
chat with other AI models.
Examples:

Claude Code asks ChatGPT for a second opinion on architecture
A medical AI consults a specialist AI for rare diseases
A writing AI checks facts with a knowledge AI

This allows for advanced inter-model communication, where specialized
AI models (e.g., Claude, ChatGPT, Gemini) collaborate.
This creates a network of diverse AI models collaborating4not just with
humans, but with each other to achieve more complex outcomes.

nicknisi.com

One-Shotting GPT-5 MCP
Point Claude Code at latest MCP docs
Point Claude Code at Latest OpenAI Docs (and ensure examples use GPT-�)
Tell it to make an MCP server in TypeScript

now lets create a MCP server that calls the GPT5 api and returns the response. Important: do NOT include temperature,
max_tokens, or top_p parameters in the GPT-5 API calls as they are not supported. Also, use safe property access like
data.output?.[0]?.content?.[0]?.text for response parsing to avoid undefined errors. Only include gpt5_generate and
gpt5_messages tools - no web search functionality.

Credit to All About AI YouTube Channel for idea

nicknisi.com

https://www.youtube.com/watch?v=SEcvuS4u0dk

7th Dimension: Agents
Managing Agents
This is the pinnacle of AI autonomy (for now?), where a meta-AI acts as an
intelligent orchestrator, delegating complex tasks to specialized agents
and overseeing their collective output.

Central Coordination: A lead AI manages and directs multiple
specialized AI agents.
Delegation & Specialization: Complex problems are broken down and
assigned to the most suitable agent.
Dynamic Resource Allocation: The managing AI optimizes agent
utilization and task prioritization.
Autonomous Workflow: Tell it what you want, not how to do it - the AI
figures out the rest and adapts along the way.

This represents a shift from humans directing individual AI tools to
humans defining high-level objectives, and an AI system autonomously
executing the entire process.

nicknisi.com

Are There More
Dimensions?

Probably! The boundaries of AI are constantly expanding, and what we've covered today is just the beginning.
Don't limit your thinking to what's already defined. You have so little imagination.

nicknisi.com

If AI gets to write all the
code and have all the fun,
what am I going to do?

nicknisi.com

We're becoming true

Engineers
nicknisi.com

Traditional engineering
disciplines (civil, mechanical,
electrical) have long emphasized:

Detail specification and documentation before implementation.
Systems thinking and understanding how components integrate
Risk assessment and planning
Standards compliance
Design reviews and formal verification processes

nicknisi.com

AI is Shifting Engineering Focus

Engineering Mindset

Less boilerplate
Reduce repetitive code work

More planning
Strategic project preparation

More
specifications

Define clear requirements

More
architecture

Design system structure

Less routine
implementation

Minimize mundane tasks

More
documentation
Capture knowledge and decisions

nicknisi.com

Augmented. Not
Replaced.
AI is transforming the engineering landscape, not by supplanting human
expertise, but by amplifying it.

Force Multipliers
Engineers evolve into strategic
force multipliers, leveraging AI
to achieve outcomes far beyond
what manual efforts allow.

Crucial Knowledge
Deep implementation
knowledge remains
indispensable, guiding AI tools
to ensure robust and effective
system designs.

Optimal Outcomes
The perfect fusion: strategic thinking + technical expertise

nicknisi.com

Your Name is Still
on the Commit

nicknisi.com

Ownership and Accountability

Ownership
Understanding and vouching for
every line of code, even if AI
generated it.

Quality
Maintaining professional standards
and your reputation by ensuring
robust and reliable solutions.

Responsibility
Ensuring future maintainability,
scalability, and positive team impact
of your AI-assisted work.

nicknisi.com

Where Your Expertise Adds
Value
In an AI-augmented world, your critical human skills become even more
valuable:

Code Review & Refinement
Critically evaluating and enhancing AI-generated code suggestions
for robustness and style.

Edge Cases & Error Handling
Designing solutions for complex scenarios and ensuring resilient
error recovery that AI might miss.

Performance Optimization
Making strategic decisions to fine-tune systems for peak efficiency
and scalability.

Team Collaboration & Documentation
Providing clear specifications and maintaining comprehensive
documentation for seamless team workflows.

Like pilots with autopilot - automation handles
routine tasks, but expertise, judgment, and
accountability remain irreplaceable.

nicknisi.com

Actually Working With AI
(this literally changes daily)

The Spec-Driven Development Process
Let me show you exactly how I work with AI. This isn't theoretical - this is what I do every day with the /generate-spec command.
01

Discuss
Thoroughly discuss the problem to fully
understand its scope and requirements.

02

Generate
Use AI to generate an initial,
comprehensive specification document.

03

Refine
Iteratively refine the specification with
human input until it is unambiguous and
complete.

04

Execute
Execute the implementation in phases, with AI assisting in code
generation and task completion.

05

Review & Commit
Critically review all AI-generated output, ensure quality, and
take ownership before committing.

See the full command
Generate Feature Specification

Feature description: $ARGUMENTS

Create a comprehensive feature specification from a high-level description or idea.

Analysis Process

1. **Requirement Clarification**
 - Parse the feature description
 - Identify core functionality needed
 - Extract user stories and use cases
 - Note any constraints or preferences mentioned

2. **Context Discovery**
 - Search existing codebase for related features
 - Identify current user flows and patterns
 - Check existing UI/UX patterns to follow
 - Note authentication, data storage, and API patterns

3. **Scope Definition**
 - Break down into logical components
 - Identify MVP vs nice-to-have features
 - Consider integration points with existing systems
 - Flag potential technical challenges

4. **User Experience Planning**
 - Map user journeys and workflows
 - Consider different user types/roles
 - Identify error states and edge cases
 - Plan responsive/accessibility considerations

Specification Template

Feature Overview
- **Name**: Clear, descriptive feature name
- **Purpose**: Why this feature is needed
- **Success Criteria**: How to measure success

User Stories
- **Primary Users**: Who will use this feature
- **Core User Stories**: "As a [user], I want [goal] so that [benefit]"
- **Edge Cases**: Less common but important scenarios

Functional Requirements
- **Core Features**: Must-have functionality
- **User Interface**: Key screens/components needed
- **Data Requirements**: What data needs to be stored/processed
- **Integration Points**: How it connects to existing systems

Technical Constraints
- **Performance**: Response time, load requirements
- **Security**: Authentication, authorization, data protection
- **Compatibility**: Browser, device, API version requirements
- **Scalability**: Expected usage growth

Acceptance Criteria
- **Definition of Done**: Specific, testable criteria
- **Test Scenarios**: Key flows to validate
- **Error Handling**: Expected error states and responses

Out of Scope
- **Future Enhancements**: Ideas for later iterations
- **Explicitly Excluded**: What this feature will NOT do

Interactive Questions

Ask clarifying questions if the description lacks:
- Target users and their needs
- Success metrics or business goals
- Technical preferences or constraints
- Integration requirements
- Timeline or priority considerations

Output
Save as: `features/{feature-name}.md`

The resulting spec should be detailed enough to:
- Hand off to another developer
- Generate accurate time estimates
- Create comprehensive PRPs
- Validate against user needs

nicknisi.com

If the spec is ambiguous, the code will be wrong.

Review Every
Requirement
Thoroughly scrutinize all stated
needs to ensure a crystal-clear
understanding of the problem.

Question Every
Assumption
Challenge implicit beliefs and
ensure all underlying premises are
explicitly defined and validated.

Define Every Edge Case
Anticipate and meticulously
document all unusual or extreme
conditions to prevent unexpected
behavior.

This is my secret weapon: obsessing over clarity. Ambiguous specs don't just confuse AI - they turn it
into an overconfident guesser that will confidently build exactly what you didn't want.

See a real generated spec
Feature Flags Support for AuthKit Remix

Feature Overview

Name: Feature Flags Integration
Purpose: Enable controlled rollout of features based on user attributes, organization membership, and custom rules
through WorkOS AuthKit
Success Criteria: Developers can easily gate features, perform A/B testing, and implement progressive rollouts with
minimal code changes

User Stories

Primary Users
- **Developers**: Need to control feature visibility and perform controlled rollouts
- **Product Teams**: Want to test features with specific user segments
- **DevOps**: Need to quickly enable/disable features without deployments

Core User Stories
- As a developer, I want to check if a feature is enabled for the current user so that I can conditionally render UI
components
- As a developer, I want to evaluate feature flags on the server-side so that I can control API behavior and data access
- As a product manager, I want to enable features for specific organizations so that I can run beta programs
- As a developer, I want to cache feature flag evaluations so that I don't impact application performance
- As a DevOps engineer, I want to disable problematic features instantly without deploying new code

Edge Cases
- User switches organizations during a session - flags should re-evaluate
- Feature flag evaluation when user is not authenticated
- Handling network failures when fetching feature flags
- Race conditions when multiple flags depend on each other
- Performance impact with large numbers of flags

Functional Requirements

Core Features

1. Feature Flag Evaluation
- Server-side evaluation in loaders and actions
- Client-side evaluation through React hooks
- Support for boolean, string, number, and JSON flag values
- Default values when flags are undefined or evaluation fails

2. Targeting Rules
- User-based targeting (user ID, email, custom attributes)
- Organization-based targeting
- Percentage-based rollouts
- Time-based activation/deactivation
- Environment-specific flags (development, staging, production)

3. Integration Points
- Seamless integration with existing `authkitLoader`
- Works with `withAuth` for low-level access
- Compatible with session refresh mechanism
- Respects existing authentication flow

4. Performance Optimization
- In-memory caching with configurable TTL
- Batch flag fetching to reduce API calls
- Background refresh for stale flags
- Option for local flag evaluation with synced rules

User Interface

React Components
```tsx
// Feature flag conditional rendering
<FeatureFlag name="new-dashboard" fallback={<OldDashboard />}>
  <NewDashboard />
</FeatureFlag>

// Hook-based approach
const { isEnabled, value, loading } = useFeatureFlag('pricing-tier');
```

Loader Integration
```tsx
export const loader = (args: LoaderFunctionArgs) =>
  authkitLoader(args, async ({ auth, flags }) => {
    const showBetaFeatures = await flags.isEnabled('beta-features');
    const pricingTier = await flags.getValue('pricing-tier', 'free');
    
    return {
      showBetaFeatures,
      pricingTier,
      // Feature data available in components
    };
  });
```

Data Requirements

Flag Configuration Storage
- Flag definitions stored in WorkOS or external provider
- Local override capability for development
- Audit log of flag changes
- Version history for rollback

Session Enhancement
- Feature flag evaluations cached in session
- Flag context passed through authentication flow
- Invalidation strategy for flag updates

Integration Points

WorkOS Integration
- Leverage existing user and organization data
- Use WorkOS API for flag management (if available)
- Fall back to popular providers (LaunchDarkly, Unleash, Flagsmith)

Configuration
```typescript
configure({
  // Existing config...
  featureFlags: {
    provider: 'workos' | 'launchdarkly' | 'unleash' | 'custom',
    apiKey: process.env.FEATURE_FLAG_API_KEY,
    projectKey: process.env.FEATURE_FLAG_PROJECT_KEY,
    cacheTtl: 300, // seconds
    enableCache: true,
    defaultFlags: {
      'new-ui': false,
      'beta-features': false,
    }
  }
});
```

Technical Constraints

Performance
- Flag evaluation must not add more than 50ms to request time
- Cache hit ratio should be > 95% for frequently accessed flags
- Support for 1000+ concurrent flag evaluations

Security
- Flags should not expose sensitive information to client
- Server-side evaluation for security-critical features
- Audit trail for flag access in production
- Encryption for flag values containing PII

Compatibility
- Works with Remix 2.x
- Compatible with existing AuthKit session management
- Supports SSR and client-side hydration
- Works in serverless environments

Scalability
- Handle 10,000+ flags per application
- Support for millions of flag evaluations per day
- Efficient sync mechanism for flag updates

Acceptance Criteria

Definition of Done
- [] Feature flags can be evaluated in loaders and actions
- [] React components/hooks available for client-side evaluation
- [] Caching mechanism implemented and configurable
- [] Integration with at least one feature flag provider
- [] Documentation with examples
- [] Unit tests with >90% coverage
- [] Performance benchmarks meet requirements
- [] Migration guide for existing users

Test Scenarios
1. **Basic Flag Evaluation**: Toggle feature on/off for specific user
2. **Organization Targeting**: Enable feature for entire organization
3. **Percentage Rollout**: Gradually roll out to 10%, 50%, 100% of users
4. **Cache Invalidation**: Flags update when user switches organization
5. **Fallback Behavior**: Graceful degradation when provider is unavailable
6. **Performance Test**: 1000 flag evaluations complete in < 500ms

Error Handling
- Network timeout when fetching flags ³ use cached/default values
- Invalid flag configuration ³ log warning, use default
- Provider API rate limit ³ implement exponential backoff
- Malformed flag value ³ type coercion or default value

Implementation Approach

Phase 1: Core Infrastructure
1. Add feature flag configuration to AuthKit config
2. Create flag evaluation service with caching
3. Integrate with session management
4. Add server-side evaluation helpers

Phase 2: React Integration
1. Create FeatureFlag component
2. Implement useFeatureFlag hook
3. Add context provider for flag state
4. Handle SSR/hydration

Phase 3: Provider Integration
1. Abstract provider interface
2. Implement WorkOS provider (if applicable)
3. Add LaunchDarkly adapter
4. Create custom provider template

Phase 4: Advanced Features
1. A/B testing utilities
2. Flag analytics and metrics
3. Webhook support for real-time updates
4. Admin UI for flag management

Out of Scope

Future Enhancements
- Visual flag editor/dashboard
- Machine learning-based targeting
- Automated flag cleanup/deprecation
- Multi-variate testing beyond A/B
- Feature flag dependency management
- Automated rollback on error metrics

Explicitly Excluded
- Direct database access for flag storage
- Building a complete feature flag service from scratch
- Mobile SDK support (React Native)
- GraphQL integration
- Real-time WebSocket updates for flags

API Examples

Configuration
```typescript
// In app/entry.server.tsx or similar
import { configure } from '@workos-inc/authkit-remix';

configure({
  clientId: process.env.WORKOS_CLIENT_ID,
  apiKey: process.env.WORKOS_API_KEY,
  redirectUri: process.env.WORKOS_REDIRECT_URI,
  cookiePassword: process.env.WORKOS_COOKIE_PASSWORD,
  featureFlags: {
    provider: 'launchdarkly',
    apiKey: process.env.LAUNCHDARKLY_SDK_KEY,
    cacheTtl: 300,
  }
});
```

Server Usage
```typescript
// In loader
export const loader = (args: LoaderFunctionArgs) =>
  authkitLoader(args, async ({ auth, flags }) => {
    // Evaluate multiple flags
    const features = await flags.evaluate([
      'new-dashboard',
      'beta-api',
      'premium-features'
    ]);
    
    // Get typed flag value
    const maxUploadSize = await flags.getValue<number>('max-upload-size', 10);
    
    // Check with targeting context
    const canAccessAdmin = await flags.isEnabled('admin-panel', {
      organizationId: auth.organizationId,
      userRole: auth.role,
    });
    
    return { features, maxUploadSize, canAccessAdmin };
  });
```

Client Usage
```tsx
// In component
function MyComponent() {
  const { isEnabled, loading } = useFeatureFlag('new-feature');
  
  if (loading) return <Spinner />;
  
  return isEnabled ? <NewFeature /> : <OldFeature />;
}

// With component wrapper
<FeatureFlag 
  name="premium-feature" 
  fallback={<UpgradePrompt />}
  loading={<Skeleton />}
>
  <PremiumContent />
</FeatureFlag>
```

Testing Support
```typescript
// In tests
import { mockFeatureFlags } from '@workos-inc/authkit-remix/testing';

test('premium features', async () => {
  mockFeatureFlags({
    'premium-feature': true,
    'max-uploads': 100
  });
  
  // Test behavior with flags enabled
});
```

Migration Strategy

For existing AuthKit Remix users:
1. Feature flags are opt-in, no breaking changes
2. Gradual adoption path - start with one flag
3. Documentation includes common patterns
4. Compatibility with existing auth flow preserved

Success Metrics

- Developer adoption: 30% of AuthKit Remix users enable feature flags within 6 months
- Performance: 99% of flag evaluations complete in < 10ms
- Reliability: 99.9% uptime for flag evaluation
- Developer satisfaction: Positive feedback in issues/discussions

nicknisi.com

Execute Spec in Controlled Phases with the /execute-spec command

AI Generates PRP
The AI first crafts a detailed Product Requirements Prompt based on your initial input using the
 /generate-prp command.

Execute One Phase
The system executes only a single, distinct phase of the specification at a time via the
/execute-prp command.

Stop & Review
After completing a phase, the process automatically pauses, awaiting your thorough review.

You're In Control
Progress only continues with your explicit command, ensuring complete human oversight and control.

See the full /execute-spec command
Execute Feature Specification

Spec File: $ARGUMENTS

Execute a feature specification in phases with validation points between each step.

Execution Process

1. **Load Spec and Prepare PRP**
 - Read the specification file completely
 - Check if corresponding PRP exists at `PRPs/{spec-name}.md`
 - If no PRP exists, automatically generate one using `/generate-prp`
 - If PRP exists but spec is newer, regenerate PRP
 - Load the PRP for implementation guidance

2. **Plan Implementation**
 - Understand all requirements and context from spec
 - Review PRP research and implementation phases
 - Create implementation plan using TodoWrite tool
 - Identify the phases and validation points

3. **Phase-by-Phase Execution**

 For each phase (from PRP):
 - Announce the phase you're starting
 - Reference spec requirements for this phase
 - Implement only that phase's requirements
 - Run phase-specific validation commands
 - Wait for user confirmation before proceeding

 Phase Structure:
 - Setup ³ Core ³ Integration ³ Testing ³ Polish
 - Each phase outputs working, testable code
 - Manual testing instructions provided
 - Validate against spec acceptance criteria

4. **Validation Protocol**
   ```bash
   # Run validation commands from PRP
   # Test against spec requirements
   # Report results clearly
   # Fix any failures before proceeding
   ```

5. **User Checkpoints**
 After each phase:
 - Show what was implemented
 - Reference which spec requirements were addressed
 - Provide manual testing steps
 - Wait for user feedback/approval
 - Allow for course correction if needed

6. **Completion**
 - Final validation suite
 - Confirm all spec requirements met
 - Check against spec acceptance criteria
 - Provide usage documentation

Automatic PRP Management
- If `PRPs/{spec-name}.md` doesn't exist, generate it automatically
- If spec file is newer than PRP, offer to regenerate PRP
- PRP generation follows same research process as `/generate-prp`
- User can inspect generated PRP before proceeding

Control Commands During Execution
- "continue" - proceed to next phase
- "fix [issue]" - address specific problem
- "pause" - stop for manual intervention
- "restart phase" - redo current phase
- "skip to [phase]" - jump ahead (with warning)
- "regenerate prp" - create new PRP from current spec
- "show prp" - display the PRP being used

Note: Always wait for user confirmation between phases unless explicitly told to continue automatically.

nicknisi.com

https://github.com/nicknisi/dotfiles/blob/main/home/.claude/commands/execute-spec.md
https://github.com/nicknisi/dotfiles/blob/main/home/.claude/commands/generate-prp.md
https://github.com/nicknisi/dotfiles/blob/main/home/.claude/commands/execute-prp.md

Remember, you own this

Code Review Every
Change
Thoroughly scrutinize all AI-
generated code to ensure it meets
your standards and requirements.

Run the Tests
Execute automated test suites to
validate functionality and catch
regressions efficiently.

Manual Testing
Conduct hands-on validation for
user experience, critical flows, and
nuanced edge cases.

Then commit. Your personal stamp of approval is crucial.

Your reputation is on the line - ship nothing less than your best.

nicknisi.com

What You Give Up:
The Artisanal Code Mindset

"The code you write day-to-day is not hand-crafted furniture. It's
assembly-line work that needs to ship."

From solving puzzles to shipping systems.

nicknisi.com

Where You Find Joy
From Syntax to Shipping

Old dopamine:
Clever one-liner

New dopamine:
Real impact, real users,
Shipping

nicknisi.com

When AI Gets Creative
A simple enough request: The build is failing with TypeScript errors. Find the errors and fix them.

Auto-accept edits was on
Came back to watch it methodically erasing my project from existence.

nicknisi.com

Replit Goes Rogue
Ignored directives about "NO MORE CHANGES"
Replit AI goes rogue during a code freeze and shutdown and deletes
entire database

nicknisi.com

This Is The Worst It Will Ever Be

Models are Improving
Monthly, weekly, with new
breakthroughs and efficiencies.

Tools are Getting Better
Daily, with enhanced features and
seamless integrations.

Workflows are Maturing
Streamlined processes making AI
interaction more intuitive and
powerful.

Despite the mistakes, we need to adopt this to continue as engineers.

The trajectory is clear.

nicknisi.com

Early Warning Signs
One critical skill you need: detecting when AI is making things up.

Warning Sign What To Look For

Too Specific Exact version numbers for obscure libraries
Too Vague "There's a function that does this"
Contradictions Different approaches in same response
Confidence No hedging on complex topics

nicknisi.com

Don't Trust, But Do Verify

Cross-Reference
Compare information from multiple AI responses to
identify inconsistencies and ensure accuracy.

Verify Citations
Always cross-check any cited sources against original,
authoritative documentation.

Assess Confidence
Prompt the AI to state its confidence level regarding the
accuracy of its generated information.

Immediate Testing
Implement and test AI-generated code or solutions
immediately to avoid accumulating technical debt.

nicknisi.com

The AI Engineer Profile
You're not writing less code.

You're shipping more features.
Key traits:

Deep Architectural Understanding
Grasping complex system designs and their interactions to
guide AI effectively.

Specification Thinking
Translating high-level requirements into clear,
unambiguous, and executable instructions for AI.

Quality Gatekeeping
Ensuring AI-generated output adheres to rigorous quality
standards through validation and testing.

Orchestration Skills
Coordinating AI tools, data flows, and human input to
optimize development pipelines.

nicknisi.com

What Stays the Same
AI fills in the what, but you're still responsible for the how and the why.

Quality Assurance
You remain the ultimate gatekeeper
for the quality and reliability of all
deployed solutions.

System Understanding
Deep architectural knowledge is
crucial to guide AI, identify issues,
and ensure proper integration.

Ownership &
Accountability
Every decision, every line of code,
ultimately carries your name and
professional reputation.

Your name is still on the commit.

nicknisi.com

The Price of Inaction
There's a rapidly closing window for cheap experimentation with AI.

Now: Affordable Iteration
The cost to tinker, learn, and integrate AI tools into your
workflow is relatively low and accessible.

Later: Expensive Catch-Up
Waiting means incurring higher costs in lost productivity,
missed opportunities, and the steep climb to bridge the
skill gap.

nicknisi.com

The Career Impact
What happens when I won't go to a company that won't let me use the tools I've become productive with?

AI Tools are Expensive
The operational costs of advanced AI models can be a
significant barrier for some companies.

Companies are Choosing Sides
Businesses are forming clear strategies: either leaning
heavily into AI or holding back due to cost/integration.

Engineers are Choosing Sides
Professionals are aligning with companies that match their
preferred work methodologies and toolsets.

Crossing the Chasm Gets Harder
The growing gap in skill sets and tool familiarity will make
transitioning between AI-forward and traditional
environments increasingly challenging.

Think about your next job search. Will you accept a position where you can't use AI?

I won't. And I'm not alone.
nicknisi.com

It's Time To

Look Again
If you tried AI tools � months ago and found them unhelpful, a lot has changed.
Then: Valid Skepticism

Early AI tools often fell short, producing unreliable or
irrelevant results. Your hesitation was justified.

Now: Indispensable Co-Pilot
Modern AI agents are smarter, more integrated, and ready

to augment your workflow in powerful ways.

The window for cheap experimentation is closing.
Don't get left behind.

nicknisi.com

Start Today
Build your AI Engineer mindset through experimentation. It's time to act.

Try AI Coding
Experiment with AI code generation on a small feature or
bug fix to understand its capabilities.

Practice Spec-Driven Dev
Refine your ability to create clear, unambiguous
specifications that guide AI effectively.

Build Orchestration Skills
Learn to integrate AI tools into your workflow, managing
data and human collaboration.

Share What You Learn
Collaborate with peers, discuss findings, and contribute to
the collective knowledge of AI engineering.

This isn't optional anymore.
You don't have to go all-in tomorrow. Start small. One feature. One bug fix. But start. Because the engineers who master this

mindset won't just survive the transition. They'll thrive in it.
nicknisi.com

You are Still the Engineer
AI empowers you, but your ownership and expertise remain paramount:

Build Your Context
Leverage AI to gather and synthesize vast amounts of
information, forming a comprehensive understanding
of your problem domain.

Make Your Decisions
Utilize AI-generated insights and options, but the
ultimate strategic and design choices remain yours to
make.

Ship Your Code
Oversee the integration and deployment of AI-assisted
code, ensuring it meets production standards and
business needs.

Own Your Outcomes
You are responsible for the quality, performance, and
impact of all solutions delivered.

The goal isn't perfect AI.

It's being a better engineer.

AI is just another member of your team 2 the best member you've ever had, if you know how to work with them.
nicknisi.com

Let's Connect
Follow Me

linkedin.com/in/nicknisi
@nicknisi.com on BlueSky
nicknisi.com/social

Access Materials

nicknisi.com/speaking/about-my-coworkers/
github.com/nicknisi/dotfiles

KCDC Talk Review Talk Materials and Links

Thank you!
nicknisi.com

https://linkedin.com/in/nicknisi
https://bsky.app/profile/nicknisi.com
https://nicknisi.com/social
https://nicknisi.com/speaking/about-my-coworkers/
https://github.com/nicknisi/dotfiles

